Daskalova, G. N. et al. Panorama-scale forest loss as a catalyst of inhabitants and biodiversity change. Science 368(6497), 1341–1347 (2020).
Betts, M. G. et al. Extinction filters mediate the worldwide results of habitat fragmentation on animals. Science 366(6470), 1236–1239 (2019).
Siddig, A. A., Ellison, A. M., Ochs, A., Villar-Leeman, C. & Lau, M. Okay. How do ecologists choose and use indicator species to observe ecological change? Insights from 14 years of publication in Ecological Indicators. Ecol. Ind. 60, 223–230 (2016).
Thancharoen, A. Nicely managed firefly tourism: An excellent device for firefly conservation in Thailand. Lampyrid. 2, 142–148 (2012).
Hwang, Y. T., Moon, J., Lee, W. S., Kim, S. A. & Kim, J. Analysis of firefly as a vacationer attraction and useful resource utilizing contingent valuation technique primarily based on a brand new environmental paradigm. J. Qual. Assur. Hosp. Tour. 21(3), 320–336 (2019).
Carlson, A. D. & Copeland, J. Flash communication in fireflies. Q. Rev. Biol. 60(4), 415–436 (1985).
Evans, T. R., Salvatore, D., van de Pol, M. & Musters, C. J. M. Grownup firefly abundance is linked to climate in the course of the larval stage within the earlier yr. Ecol. Entomol. 44(2), 265–273 (2018).
Lewis, S. M. et al. A world perspective on firefly extinction threats. Bioscience 70(2), 157–167 (2020).
Cao, C. Q., Zhang, Y., Wang, Y. Z. & He, H. Progress within the analysis, safety, growth and utilization of fireflies. J. Environ. Entomol.1–36 (2022).
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403(6772), 853–858 (2000).
Thorn, J. S., Nijman, V., Smith, D. & Nekaris, Okay. A. I. Ecological area of interest modelling as a way for assessing threats and setting conservation priorities for Asian gradual lorises (Primates:Nycticebus). Divers. Distrib. 15(2), 289–298 (2009).
Elith, J. & Leathwick, J. R. Species distribution fashions: Ecological rationalization and prediction throughout area and time. Annu. Rev. Ecol. Evol. Syst. 40(1), 677–697 (2009).
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Most entropy modeling of species geographic distributions. Ecol. Mannequin. 190(3–4), 231–259 (2006).
Hirzel, A. H., Hausser, J., Chessel, D. & Perrin, N. Ecological-Area of interest Issue Evaluation: Methods to compute habitat-suitability maps with out absence information?. Ecology 83(7), 2027–2036 (2002).
Nelder, J. A. & Wedderburn, R. W. Generalized linear fashions. J. R. Stat. Soc. Ser. A (Normal). 135(3), 370–384 (1972).
Hastie, T. J. Generalized additive fashions. Statistical fashions in S. Routledge. 249–307 (2017).
Stockwell, D. R. & Noble, I. R. Induction of units of guidelines from animal distribution information: A strong and informative technique of knowledge evaluation. Math. Comput. Simul. 33(5–6), 385–390 (1992).
Beaumont, L. J., Hughes, L. & Poulsen, M. Predicting species distributions: use of climatic parameters in BIOCLIM and its influence on predictions of species’ present and future distributions. Ecol. Mannequin. 186(2), 251–270 (2005).
Jung, J. M., Lee, W. H. & Jung, S. Insect distribution in response to local weather change primarily based on a mannequin: Evaluation of operate and use of CLIMEX. Entomol. Res. 46(4), 223–235 (2016).
Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a complete analysis. Ecography 31(2), 161–175 (2008).
Moreno, R., Zamora, R., Molina, J. R., Vasquez, A. & Herrera, M. Á. Predictive modeling of microhabitats for endemic birds in South Chilean temperate forests utilizing Most entropy (Maxent). Eco. Inform. 6(6), 364–370 (2011).
Wang, Z. et al. Prediction of potential distribution of the invasive Chrysanthemum Lace Bug, Corythucha marmorata in China primarily based on Maxent. J. Environ. Entomol. 41(3), 626–633 (2019).
Li, A. et al. MaxEnt modeling to foretell present and future distributions of Batocera lineolata (Coleoptera: Cerambycidae) beneath local weather change in China. Ecoscience 27(1), 23–31 (2020).
Sutherland, L. N., Powell, G. S. & Bybee, S. M. Validating species distribution fashions to light up coastal fireflies within the South Pacific (Coleoptera: Lampyridae). Sci. Rep. 11(1), 1–12 (2021).
Fu, X. H., Ballantyne, L. A. & Lambkin, C. Emeia gen. nov., a brand new genus of Luciolinae fireflies from China (Coleoptera: Lampyridae) with an uncommon trilobite-like larva, and a redescription of the genus Curtos Motschulsky. Zootaxa. 3403(1), 1–53 (2012).
Idris, N. S. et al. The dynamics of panorama adjustments surrounding a firefly ecotourism space. Glob. Ecol. Conserv. 29, e01741 (2021).
Santiago-Blay, J. A. Silent Sparks: The Wondrous World of Fireflies. Life: The Pleasure of Biology. (2016).
Picchi, M. S., Avolio, L., Azzani, L., Brombin, O. & Camerini, G. Fireflies and land use in an city panorama: the case of Luciola italica L.(Coleoptera: Lampyridae) within the metropolis of Turin. J. Insect Conserv. 17(4), 797–805 (2013).
Pearsons, Okay. A., Decrease, S. E. & Tooker, J. F. Toxicity of clothianidin to widespread Jap North American fireflies. PeerJ 9, e12495 (2021).
Madruga Rios, O. & Hernández Quinta, M. Larval Feeding Habits of the Cuban Endemic FireflyAlecton discoidalisLaporte (Coleoptera: Lampyridae). Psyche J. Entomol. 2010, 1–5 (2010).
Roberge, J. M. & Angelstam, P. E. R. Usefulness of the umbrella species idea as a conservation device. Conserv. Biol. 18(1), 76–85 (2004).
Bowen-Jones, E. & Entwistle, A. Figuring out applicable flagship species: The significance of tradition and native contexts. Oryx 36(2), 189–195 (2002).
Walpole, M. J. & Chief-Williams, N. Tourism and flagship species in conservation. Biodivers. Conserv. 11(3), 543–547 (2002).
Zhejiang Provincial Bureau of Statistics. Zhejiang bodily geography profile, http://tjj.zj.gov.cn/col/col1525489/index.html (2022).
Zhejiang Provincial Forestry Division. Announcement of Forest Assets and Their Ecological Perform Worth in Zhejiang Province. Zhejiang Each day. https://doi.org/10.38328/n.cnki.nzjrb.2016.002829 (2016).
Boria, R. A., Olson, L. E., Goodman, S. M. & Anderson, R. P. Spatial filtering to scale back sampling bias can enhance the efficiency of ecological area of interest fashions. Ecol. Mannequin. 275, 73–77 (2014).
Brown, J. L. SDM toolbox: A python-based GIS toolkit for panorama genetic, biogeographic and species distribution mannequin analyses. Strategies Ecol. Evol. 5(7), 694–700 (2014).
Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial decision local weather surfaces for world land areas. Int. J. Climatol. 37(12), 4302–4315 (2017).
Elvidge, C. D., Zhizhin, M., Ghosh, T., Hsu, F.-C. & Taneja, J. Annual time sequence of worldwide VIIRS nighttime lights derived from month-to-month averages: 2012 to 2019. Distant Sens. 13(5), 922 (2021).
WAN, J. et al. Predicting the potential geographic distribution of Bactrocera bryoniae and Bactrocera neohumeralis (Diptera: Tephritidae) in China utilizing MaxEnt ecological area of interest modeling. J. Integr. Agric. 19(8), 2072–2082 (2020).
Zhou, R. et al. Projecting the potential distribution of glossina morsitans (Diptera: Glossinidae) beneath local weather change utilizing the MaxEnt mannequin. Biology. 10(11), 1150 (2021).
Hill, M. P., Hoffmann, A. A., McColl, S. A. & Umina, P. A. Distribution of cryptic blue oat mite species in Australia: present and future local weather situations. Agric. For. Entomol. 14(2), 127–137 (2011).
Su, H., Bista, M. & Li, M. Mapping habitat suitability for Asiatic black bear and pink panda in Makalu Barun Nationwide Park of Nepal from Maxent and GARP fashions. Sci. Rep. 11(1), 1 (2021).
Proosdij, A. J., Sosef, M., Wieringa, J. & Raes, N. Minimal required variety of specimen information to develop correct species distribution fashions. Ecography 39, 542–552 (2016).
Lobo, J. M., Jiménez-Valverde, A. & Actual, R. AUC: A deceptive measure of the efficiency of predictive distribution fashions. Glob. Ecol. Biogeogr. 17(2), 145–151 (2008).
Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution fashions: Prevalence, kappa and the true ability statistic (TSS). J. Appl. Ecol. 43(6), 1223–1232 (2006).
Liu, C., Newell, G. & White, M. On the number of thresholds for predicting species incidence with presence-only information. Ecol. Evol. 6(1), 337–348 (2016).
Swets, J. A. Measuring the accuracy of diagnostic programs. Science 240(4857), 1285–1293 (1988).
Pearce, J. & Ferrier, S. Evaluating the predictive efficiency of habitat fashions developed utilizing logistic regression. Ecol. Mannequin. 133(3), 225–245 (2000).
Gama, M., Crespo, D., Dolbeth, M. & Anastácio, P. M. Ensemble forecasting of Corbicula fluminea worldwide distribution: projections of the influence of local weather change. Aquat. Conserv. Mar. Freshwat. Ecosyst. 27(3), 675–684 (2017).
Zhao, Y., Deng, X., Xiang, W., Chen, L. & Ouyang, S. Predicting potential appropriate habitats of Chinese language fir beneath present and future climatic situations primarily based on Maxent mannequin. Eco. Inform. 64, 101393 (2021).
Evans, T. R., Salvatore, D., van de Pol, M. & Musters, C. J. M. Grownup firefly abundance is linked to climate in the course of the larval stage within the earlier yr. Ecol. Entomol. 44(2), 265–273 (2018).
Chettri, B., Bhupathy, S. & Acharya, B. Okay. Distribution sample of reptiles alongside an japanese Himalayan elevation gradient India. Acta Oecol. 36(1), 16–22 (2010).
Brown, J. H. Mammals on mountainsides: elevational patterns of variety. World Ecol. Biogeogr. 10(1), 101–109 (2001).
Gairola, S., Sharma, C. M., Ghildiyal, S. Okay. & Suyal, S. Tree species composition and variety alongside an altitudinal gradient in moist tropical montane valley slopes of the Garhwal Himalaya India. For. Sci. Technol. 7(3), 91–102 (2011).
Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of incidence information: A take a look at case utilizing cryptic geckos in Madagascar. J. Biogeogr. 34(1), 102–117 (2007).
Hernandez, P. A., Graham, C. H., Grasp, L. L. & Albert, D. L. The impact of pattern measurement and species traits on efficiency of various species distribution modeling strategies. Ecography 29(5), 773–785 (2006).
Abe, N. Kansei estimation on luminescence of Firefly-Kansei info measurement and welfare utilization. J. Japan Soc. Kansei Eng. 3(2), 41–50 (2004).
Buckley, R. et al. Financial worth of protected areas through customer psychological well being. Nat. Commun. 10(1), 1 (2019).
Lewis, S. M. et al. Firefly tourism: Advancing a world phenomenon towards a brighter future. Conserv. Sci. Pract. 3(5), 1 (2021).